Abstract
Bagasse and rice hulls ash are both waste materials. In recent years, in order to meet environmental protection, these materials have been recycled in the production of porous ceramics. A solid-state reaction mechanism of calcined alumina and talc was used to prepare cordierite–spinel porous ceramics. Talc was added from 30 to 60 wt.% at the expense of alumina and sintered at 1400°C for 2 h. The effect of bagasse and rice hulls ash (as a pore forming agent) on the densification parameters, cold crushing strength (CCS), and pore size distribution was also studied. The phase composition (X-ray diffraction) and microstructure (scanning electron microscopy) of sintered samples were investigated. The results showed that the main phases present in the samples are cordierite, corundum, spinel, and sapphirine. In the sample with a higher amount of talc additions (60 wt.%), only the formation of the cordierite and spinel phases was observed. The bulk density of the samples and the apparent porosity ranged from 1.77 to 2.26 g/cm3 and from 28.6% to 48.21%, respectively. The CCS of the samples ranges from 13.9 to 36.3 MPa. The microstructures of the sintered samples were observed for the formation of cordierite phase, alumina phase, and spinel phase in an excellent crystallization and phase arrangement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Ceramic Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.