Abstract

The cathodes of spent ternary lithium-ion batteries (LIBs) are rich in nonferrous metals, such as lithium, nickel, cobalt and manganese, which are important strategic raw materials and also potential sources of environmental pollution. Finding ways to extract these valuable metals cleanly and efficiently from spent cathodes is of great significance for sustainable development of the LIBs industry. In the light of low energy consumption, ‘green’ processing and high recovery efficiency, this paper provides an overview of different recovery technologies to recycle valuable metals from cathode materials of spent ternary LIBs. Development trends and application prospects for different recovery strategies for cathode materials from spent ternary LIBs are also predicted. We conclude that a highly economic recovery system: alkaline solution dissolution/calcination pretreatment → H2SO4 leaching → H2O2 reduction → coprecipitation regeneration of nickel cobalt manganese (NCM) will become the dominant stream for recycling retired NCM batteries. Furthermore, emerging advanced technologies, such as deep eutectic solvents (DESs) extraction and one–step direct regeneration/recovery of NCM cathode materials are preferred methods to substitute conventional regeneration systems in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call