Abstract

Slags from the ferrous and nonferrous metallurgical industries have been used to treat toxic contaminants in water and wastewater. Using slag as a recycling or renewable resource rather than a waste product has environmental and economic benefits. Recycled smelter slags can be used in both in situ and ex situ treatment. However, their application has some limitations. One of the challenges is how to handle spent slag adsorbents, as they contain the accumulation of solid waste loaded with high concentrations of toxic contaminants. These challenges can be overcome by regeneration, recycling, reuse, and immobilization treatment of spent slag adsorbents. The present paper explored the scientific and technical information about the composition, reaction mechanisms, adsorption capacity, and opportunities of recycled slags while adsorbing toxic compounds from contaminated water. It comprehensively reviewed the current state of the art for using smelting slags as sustainable adsorbents for water and wastewater. The study revealed that ferrous slags are more effective in removing a wide range of toxic chemicals than nonferrous smelter slags. It investigated the necessary improved approach through the 5Rs (i.e., reduce, reuse, recycle, remove, and recover) using smelter slags as reactive materials in ex situ and in situ treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call