Abstract
The pulp and paper industry stands out as an example of a technology based on a renewable resource, cellulose. The sludge, however, poses major environmental and public health problems. To effectively manage the sludge wastes, it is critical to fully evaluate its composition, possible environmental impacts, and the total amount of exploitable renewable resources. The study established the pH of the sludge to be 7.32 ± 0.98, an electrical conductivity (1.84 mS/cm), nitrogen concentration (2.65 ± 0.21%), and total organic matter (41.23 ± 3.11%). The cellulosic content was established to be 74.07 ± 2.71% which contributes to 53.07 ± 1.23% water holding capacity (WHC). The most abundant elements were C and O, followed by Cl, Si, Al, and Mg, with lower concentrations of S, Si, K, and iron. The polycyclic aromatic compounds (PAHs) levels ranged from 0.29 to 322.56 ng.g-1 with 1-methyl pyrene posting the highest concentration (322.56 ng.g-1. XRD peaks at 17.10°, 23.86°, 30.14°, and 36.57°, which imply the existence of CaCO3. SEM indicated that the sludge was majorly comprised of fibers materials with average particle sizes of 280 micrometers. TGA/DTG analysis showed that the sludge had the greatest cellulose and hemicellulose (64.7 wt. %).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Science and Health, Part A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.