Abstract
Polymer nanocomposites containing recycled poly(ethylene terephthalate) (r-PET) as a polymer matrix and Cloisite® 10A as a reinforcement were prepared through melt compounding. First, a masterbatch containing 20 wt% of Cloisite® 10A clay was prepared and later diluted with neat r-PET to obtain nanocomposites containing 1, 2, 4 and 6 wt% of clay. The rheological, thermal, mechanical and morphological properties of the PET–clay nanocomposites were characterized. The complex viscosity of the nanocomposites gradually increases with increase in clay content. The storage modulus and loss modulus of nanocomposite containing 1 wt% of clay was similar to neat r-PET but increases with increase in clay content. Incorporation of clay into a r-PET slightly increases the crystallisation temperature and degree of crystallinity due to the heterogenous nucleating effect of clay. Thermal stability and glass transition temperature of nanocomposite containing Cloisite® 10A clay at lower loadings was similar to r-PET and gradually decreases with increase in clay content. The tensile properties of PET–clay nanocomposites increased gradually with clay content. The impact strength of nanocomposites was not altered until 4 wt% and decreased at 6 wt%. Morphological investigations indicated homogeneous dispersion of clay in r-PET.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.