Abstract

This paper analyzes the ability of two Spent Refractory Wastes (SRW) for the manufacturing of recycled granulates for construction applications. A binary magnesium oxide and ground granulated blast furnace slag hydraulic binder was considered as an agglomerating agent for the granulates manufacturing. Influence of curing atmosphere was carried out: in air, 20 % CO2 and 100 % CO2 atmosphere up to 28 days. Granulometry, thermal analysis, particle density, bulk density, water absorption and mechanical strength tests were performed to characterize the granulates. SRW showed their ability for the granulates manufacturing. Results demonstrated the existence of a residual reactivity of the wastes considered. A direct relationship between the CO2 content of the curing atmosphere and the granulates hydration degree was observed. Carbonation process increased from 7 days to 28 days and direct relationships were observed between the CO2 content and the carbonation degree as well as between the binder dosage and the carbonation degree. CO2 curing reduced the water absorption and increased the compressive strength of the granulates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.