Abstract

Urban streams are at high risk of riparian erosion which impacts adjacent infrastructure stability. Methods to prevent stream erosion have been proposed including using recycled concrete (RC) materials to help stabilize the streambed; however, little is known about the environmental and biological impacts of using RC in urban streams. RC, new concrete (NC), and river rock controls were evaluated for their impact on water chemistry, water quality, and microbial community composition over 6.5 months in controlled laboratory mesocosms. Concentrations of 19 metals, nutrients, and pH of mesocosms containing RC were not significantly different from the river rock mesocosm throughout the experiment; however, NC mesocosms contained significantly higher (p < 0.05) concentrations of Co, As, Al, and V in mesocosm water samples compared to both RC and the river rock control. Microbial community diversity was not significantly impacted by mesocosm treatment. Microbial sequences mapping to taxa including Rhodoferax, Acidovorax, Nitrosomonas, and Novosphingobium were significantly more abundant (p < 0.01) in RC and NC mesocosm samples; however, the overall microbial community structure was similar across treatment types. Results from this study suggest that RC does not significantly alter the stream environment including microbial community diversity and is a viable option for use in stream restoration projects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.