Abstract
The objective of the research outlined in this paper is to propose an eco-friendly solution that simultaneously contributes to improving the characteristics of polymer composites. The analyzed solution entails the use of recycled aggregate from crushed concrete rubble. The authors conducted experiments to test the consistency, density, flexural strength, compressive strength, and microstructure of polymer concrete (PC) with different proportions of recycled aggregate (RA). It was found that PC with RA had a higher compressive strength, 96 MPa, than PC with natural aggregate, 89.1 MPa, owing to the formation of a double-layer shell of resin and calcium filler on the surface of porous RA grains. Using a resin with a lower viscosity could improve the performance of PC with RA by filling the cracks and penetrating deeper into the pores. RA is a valuable material for PC production, especially when it contains porous grains with poor mechanical properties, which are otherwise unsuitable for other applications. This article also highlights the environmental and economic benefits of using RA in PC, as it can reduce waste generation and natural resource consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.