Abstract
This study demonstrates a new and sustainable methodology for recycling continuous carbon fibers from end-of-life thermoset composite parts using Joule heating. This process addresses the longstanding challenge of efficiently recovering carbon fibers from composite scrap and reusing them to make fresh composites. The conductive carbon fibers volumetrically heat up when an electric current is passed through them, which in turn rapidly heats up the surrounding matrix sufficiently to degrade it. Fibers can be easily separated from the degraded matrix after the direct current (DC) heating process. Fibers reclaimed using this method were characterized to determine their tensile properties and surface chemistry, and compared against both as-received fibers and fibers recycled using conventional oven pyrolysis. The DC- and oven-recycled fibers yielded similar elastic modulus when compared against as-received fibers; however, an around 10-15 % drop was observed in the tensile strength of fibers recycled using either method. Surface characterization showed that DC-recycled fibers and as-received fibers had similar types of functional groups. To demonstrate the reusability of recycled fibers, composites were fabricated by impregnation with epoxy resin and curing. The mechanical properties of these recycled carbon fiber composites (rCFRCs) were compared against conventional recycling methods, and similar modulus and tensile strength values were obtained. This study establishes DC heating as a scalable out-of-oven approach for recycling carbon fibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.