Abstract

Green electromagnetic interference (EMI) shielding materials not only require high shielding effectiveness (SE) and low reflection but also need to be recyclable after damage; however, it is challenging to strike a balance in practice. Here, a polyacrylamide (PAM) composite composed of numerous chemically cross-linked PAM@carbon nanotube (cPAM@CNT) core-shell particles featuring rich wrinkled microstructures was prepared using an adsorption-drying-shrinking strategy. The wrinkled microstructures enable the incident electromagnetic waves (EMWs) to undergo attenuation within the composites, achieving an average EMI SE of 67.5 dB in the X band. Due to the hygroscopicity of hydrophobically associated PAM (hPAM, an adhesive for cPAM@CNTs core-shell particles), the average EMI SE of the composites further increased to 83.2 dB after exposure to 91% relative humidity for 24 h, with only a 2.7 dB low reflection. Additionally, the composites also demonstrated excellent Joule heating, photothermal performance, and recyclability, which exhibit substantial promise for advanced EMI shielding applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call