Abstract

Abstract During recent years, magnetic separation has proven to be a highly indispensable and sustainable tool for facile separation of catalysts from the reaction medium with the aid of only an external magnetic force that precludes the requirement of energy intensive, solvent based centrifugation or filtration techniques. Extensive research in the area of catalysis has clearly divulged that while designing any catalyst, the foremost features that need to be paid due attention to include high activity, ready recoverability and good reusability. Fortunately, the magnetic nanocatalysts involving a superparamagnetic core material that could comprise of iron oxides such as magnetite, maghemite or hematite or mixed ferrites (CoFe2O4, CuFe2O4) have offered bright prospects of designing the ideal catalysts by proving their efficacy as strong support material that could be further engineered with various tools of nanotechnology and efficiently catalyze various C–heterobond formation reactions. This chapter provides succinct overview of all the approaches utilized for fabricating different types of magnetic nanoparticles and strategies adopted for imparting them durability. The prime forte however remains to exclusively showcase the applications of the various types of magnetic nanocatalysts in C–O, C–N, C–S and miscellaneous (C–Se, C–Te) bond formation reactions which are anticipated to benefit the synthetic community on a broad spectrum by helping them rationalize and analyze the key features that need to be taken into account, while developing these magical nanostructured catalytic systems for boosting the green bond formation reactions/transformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.