Abstract
Selective aerogel has become an attractive adsorbent for removing oil and organic contaminants due to its low density and excellent adsorption capacity. However, aerogels usually use non-sustainable or expensive nanomaterials and require complicated fabrication processes. Herein, using low-cost lignin reclaimed from the biorefinery waste stream as the starting material, we fabricated a highly porous, mechanically strong, and stable aerogel via a simple and one-step method under mild conditions. This aerogel exhibits a controllable micropore structure and achieves quick and efficient adsorption for oil (435% g/g), as well as toxic solvents such as THF (365% g/g). The selective and stable adsorbent can be reused multiple times and the oil adsorption capacity after 5 cycles remained at 89%. This highly efficient, mechanically strong, stable, and regenerable aerogel is a potential candidate for multiple applications such as cleaning up organic contaminants, oil remediation, and oil/water separation. Meanwhile, it also employs a “waste-treat-waste” concept by adding extra value to the biorefinery process for high-efficiency circular bioeconomy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.