Abstract

Most gels and elastomers introduce sacrificial bonds in the covalent network to dissipate energy. However, long-term cyclic loading caused irreversible fatigue damage and crack propagation cannot be prevented. Furthermore, because of the irreversible covalent crosslinked networks, it is a huge challenge to implement reversible mechanical interlocking and reorganize the polymer segments to realize the recycling and reuse of ionogels. Here, covalent crosslinking of host materials is replaced with entanglement. The entangled microdomains are used as physical crosslinking while introducing reversible bond interactions. The interpenetrating, entangled, and elastic microdomains of linear segments and covalent-network microspheres provide mechanical stability, eliminate stress concentration at the crack tip under load, and achieve unprecedented tear and fatigue resistance of ionogels in any load direction. Moreover, reversible entanglements and noncovalent interactions can be disentangled and recombined to achieve recycling and mechanical regeneration, and the recyclability of covalent-network microdomains is realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.