Abstract

Fe3O4 nanoparticles as nanocatalysts may present peroxidase-like catalysis activities and high electrocatalysis if loaded on conductive carbon nanotube (CNT) supports; however, their catalysis performances in an aqueous system might still be challenged by the poor aqueous dispersion of hydrophobic carbon supports and/or low stability of loaded iron catalysts. In this work, amphiphilic graphene oxide nanosheets were employed as "surfactant" to disperse CNTs to create stable graphene oxide-dispersed CNT (GCNT) supports in water for covalently loading cubic Fe3O4 nanoparticles with improved distribution and binding efficiency. Compared with original Fe3O4 nanos and CNT-loaded Fe3O4 nanocomplex, the prepared GCNT-Fe3O4 nanocomposite could achieve higher aqueous stability and, especially, much stronger peroxidase-like catalysis and electrocatalysis to H2O2, presumably resulting from the synergetic effects of two conductive carbon supports and cubic Fe3O4 nanocatalysts effectively loaded. Colorimetric and direct electrochemical detections of H2O2 and glucose using the GCNT-Fe3O4 nanocomposite were conducted with high detection sensitivities, demonstrating the feasibility of practical sensing applications. Such a magnetically recyclable "enzyme mimic" may circumvent some disadvantages of natural protein enzymes and common inorganic catalysts, featuring the multi-functions of high peroxidase-like catalysis, strong electrocatalysis, magnetic separation/recyclability, environmental stability, and direct H2O2 electrochemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.