Abstract

We synthesized a novel curcumin-based bioepoxy resin by introducing epichlorohydrin (ECH) into the hydroxyl groups of curcumin and analyzed it using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The epoxy equivalent weight (EEW) was determined based on a reaction with sodium hydroxide (NaOH) through titration, and the actual curing process was conducted after exploring the optimal conditions using an amine-based curing agent through dynamic scanning in differential scanning calorimetry (DSC) and isotherm analysis. The cured epoxy resin had a tensile strength, Young's modulus, and glass transition temperature (Tg) of 33 MPa, 1.4 GPa, and 86 °C, respectively. Interestingly, the diunsaturated ketone contained in the epoxy resin showed on-demand chemical cleavability, in that it had been decomposed into an aldehyde and ketone only after having been converted to a hydroxyl ketone through an oxidation reaction. The results of this study can significantly contribute to improving the eco-friendliness and recyclability of epoxy resins used in fields requiring long-term stability and chemical resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.