Abstract

Deformation mechanisms are largely unknown for superelastic carbon nanotube (CNT) aerogels, and this hampers materials design efforts. The CNT network in the cell walls is typically crosslinked or connected by a thermoset polymer phase. In order to create a recyclable superelastic aerogel, unmodified single or multi-walled CNTs were dispersed in water by adding to aqueous carboxymethyl cellulose (CMC) solution. Directional freeze-drying was used to form honeycombs with cell walls of random-in-the-plane CNTs in CMC matrix. Cell wall morphology and porosity were studied and related to CNT type and content, as well as elastic or plastic buckling of the cell walls under deformation. CMC acts as a physical crosslinker for the CNTs in a porous cell wall. Aerogel structure and properties were characterized before and after recycling. The conductivity of the composite aerogel with a density of 10 kg/m3, 99% porosity and 50 wt % single-walled CNT exceeds 0.5 S/cm. The potential of these superelastic and conductive aerogels for applications such as mechanoresponsive materials was examined in cyclic conductivity tests at different strains. This opens a new route for recyclable superelastic CNT composite aerogels, avoiding material loss, chemical treatment or addition of other components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call