Abstract

Commercial ethylene propylene diene monomer (EPDM) rubber grafted with maleic anhydride (EPDM-g-MA) was thermoreversibly crosslinked by silane modified silica. EPDM-g-MA was first modified with furfurylamine to obtain furan functionalized EPDM (EPDM-g-FA) which was then crosslinked with 3-methacryloxypropyltrimethoxysilane (as electron-poor agent) modified silica via a Diels-Alder reaction. The as-formed rubber network could be broken at high temperature and reconstructed by thermal annealing, which were proven by differential scanning calorimetric analysis and solubility testing. The mechanical strength of the resulting EPDM/silica composites could be tailored by the amount of modified silica and were superior to the previously reported EPDM rubber crosslinked by low molecular organic agents. More importantly, the rubber composites showed good thermal reprocessability and self-healing behavior, by which the crosslinked composites could be recycled to use with comparable mechanical property as the original composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.