Abstract

Practical application of photocatalysis is often challenged by some intrinsic issues such as recombination of photogenerated charge carriers, stability and separation, etc. Herein, bismuth decorated 0D/2D ZnFe2O4/Bi5FeTi3O15 (Bi/ZF/BFT) step-scheme (S-scheme) heterojunction was fabricated by an in-situ method. Due to the advantages of structure and composition, the Bi/ZF/BFT with the desired proportion (Bi/ZF/BFT-35) exhibits favorable photocatalytic performance towards tetracycline (TC) degradation. Compared with the pure ZF, the nanohybrid shows superior stability after 5 times cycle tests. Moreover, Bi/ZF/BFT-35 is convenient to be separated from the reaction system due to its magnetic nature. As identified by ESR measurement, •O2− and •OH radicals were involved in the photodegradation of TC, which supports that the S-scheme is successfully prepared. Also, the Bi/ZF/BFT-35 shows great ability of chemical oxygen demand (COD) removal in the practical wastewater as well. Importantly, antibacterial activity against E. coli test indicates that photodegraded TC has lower biotoxicity. The present work demonstrates that cocatalyst Bi modified ZF/BFT S-scheme can not only significantly improve its stability with good recyclability from the reaction system, but also inhibits the recombination of charge carriers, giving insight on the strategy of fabricating a promising photocatalyst for practical wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.