Abstract

We present a stochastic model predictive control (MPC) method for linear discrete-time systems subject to possibly unbounded and correlated additive stochastic disturbance sequences. Chance constraints are treated in analogy to robust MPC using the concept of probabilistic reachable sets for constraint tightening. We introduce an initialization of each MPC iteration which is always recursively feasible and guarantees chance constraint satisfaction for the closed-loop system, which is typically challenging for systems under unbounded disturbances. Under an i.i.d. zero-mean assumption, we provide an average asymptotic performance bound. A building control example illustrates the approach in an application with time-varying, correlated disturbances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.