Abstract

We present an efficient, stable, recursive T-matrix algorithm to calculate the scattered field from a heterogeneous collection of spatially separated objects. The algorithm is based on the use of higher order multipole expansions than those typically employed in recursive T-matrix techniques. The use of these expansions introduces instability in the recursions developed by Chew (1990) and by Wang and Chew (1990), specifically in the case of near-field computations. By modifying the original recursive algorithm to avoid these instabilities, we arrive at a flexible and efficient forward solver appropriate for a variety of scattering calculations. The algorithm can be applied when the objects are dielectric, metallic, or a mixture of both. We verify this method for cases where the scatterers are electrically small (fraction of a wavelength) or relatively large (12/spl lambda/). While developed for near-field calculation, this approach is applicable for far-field problems as well. Finally, we demonstrate that the computational complexity of this approach compares favorably with comparable recursive algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.