Abstract

The need for tree structure modelling on top of sequence modelling is an open issue in neural dependency parsing. We investigate the impact of adding a tree layer on top of a sequential model by recursively composing subtree representations (composition) in a transition-based parser that uses features extracted by a BiLSTM. Composition seems superfluous with such a model, suggesting that BiLSTMs capture information about subtrees. We perform model ablations to tease out the conditions under which composition helps. When ablating the backward LSTM, performance drops and composition does not recover much of the gap. When ablating the forward LSTM, performance drops less dramatically and composition recovers a substantial part of the gap, indicating that a forward LSTM and composition capture similar information. We take the backward LSTM to be related to lookahead features and the forward LSTM to the rich history-based features both crucial for transition-based parsers. To capture history-based information, composition is better than a forward LSTM on its own, but it is even better to have a forward LSTM as part of a BiLSTM. We correlate results with language properties, showing that the improved lookahead of a backward LSTM is especially important for head-final languages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.