Abstract

Considering discrete-time systems with uncertain observations when the signal model is unknown, but only covariance information is available, and the signal and the observation additive noise are correlated and jointly Gaussian, we present recursive algorithms for suboptimal fixed-point and fixed-interval smoothing estimators. To derive the algorithms, we employ a technique consisting in approximating the conditional distributions of the signal given the observations by Gaussian distributions, taking successive approximations of the mixtures of normal distributions. The expectation of these approximations provides us with the suboptimal estimators. In a numerical simulation example, the performance of the proposed estimators is compared with that of linear ones, via the sample mean square values of the corresponding estimation errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.