Abstract
In the data driven predictive maintenance, high quality data is the premise of high accuracy diagnosis and prediction. In the industrial practice, reducing the noise is of great significance to ensure data quality. This paper proposes a recursive denoising method for manufacturing equipment signals in the data driven predictive maintenance. First, in signal decomposition method, equipment mixed signal is decomposed by temporal masking with dilated convolution neural network to generate a noise mask, which realizes signal decomposition of using recursive operation of temporal masking model. Second, in signal components recognition method, signal component features similarities are calculated, which act on the parameter regulation of signal recognition meta-learning model. The experimental results demonstrated that the proposed method effectively solves the noise reduction problem of the equipment signal. Further engineering tests of a chemical winding machine vibration signal decomposition and recognition show that the proposed method has strong adaptive performance for noise reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.