Abstract
A new recursive algorithm is developed for solving the algebraic Sylvester equation that defines the cross Grammian of singularly perturbed linear systems. The cross Grammian matrix provides aggregate information about controllability and observability of a linear system. The solution is obtained in terms of reduced-order algebraic Sylvester equations that correspond to slow and fast subsystems of a singularly perturbed system. The rate of convergence of the proposed algorithm isOε, whereεis a small singular perturbation parameter that indicates separation of slow and fast state variables. Several real physical system examples are solved to demonstrate efficiency of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.