Abstract
In a practical industrial scenario, the variability in bearing operating conditions complicates the collection of a sufficient number of labeled samples, thereby limiting the effectiveness of traditional deep learning-based fault diagnosis methods. In addition, the influence of abnormal samples on the prototype features also severely limits the performance of prototypical network in few-shot fault diagnosis. To address the above issues, a recursive prototypical network based on meta-learning is proposed for few-shot cross-condition bearing fault diagnosis. Firstly, a feature extractor with coordinate attention mechanism is developed, which is able to deeply extract effective features in complex vibration signals. Furthermore, a recursive prototype computation module is introduced to alleviate prototype bias arising from abnormal samples, thereby achieving a more precise representation of prototypes. Finally, a metric module is utilized to obtain the similarity between the prototypes and the query set samples to achieve an accurate classification of faults. To verify the efficacy and superiority of the proposed method, its performance was evaluated on two bearing vibration datasets. The experimental results demonstrated that the method is significantly better than other deep learning methods with high accuracy and generalization, and greater suitability for few-shot cross-condition bearing fault diagnosis tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.