Abstract

Kernel and linear regression have been recently explored in the prediction of graph signals as the output, given arbitrary input signals that are agnostic to the graph. In many real-world problems, the graph expands over time as new nodes get introduced. Keeping this premise in mind, we propose a method to recursively obtain the optimal prediction or regression coefficients for the recently propose Linear Regression over Graphs (LRG), as the graph expands with incoming nodes. This comes as a natural consequence of the structure C(W)= of the regression problem, and obviates the need to solve a new regression problem each time a new node is added. Experiments with real-world graph signals show that our approach results in good prediction performance which tends to be close to that obtained from knowing the entire graph apriori.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.