Abstract
The objective of this study was to explore whether time-variant parameter estimation procedures allow modeling and predicting the dynamic growth response of broiler chickens to feed intake in real time. A recursive linear model was used that estimated the model parameters every 24 h based on a fixed number of actual and past measurements (i.e., time window). Based on 48 datasets, it was concluded that the mean relative prediction error (MRPE) of the recursive linear modeling approach had a minimum for a window size of 5 d. Weight of the birds could be predicted during the growth process 3 to 7 d ahead with a mean relative prediction error of 5% or less. In comparison with the prediction results of three static empirical growth models (one linear and two nonlinear models), the recursive modeling technique had a similar accuracy to the nonlinear empirical models (MRPE of 1.4% to 2.3% vs. 1.1% to 2.8%), but it was less accurate for larger prediction horizons (2 to 7 d). The compact recursive linear model was more accurate than the static linear growth model for prediction horizons of one up to 4 d, depending on the feeding strategy. Since such recursive modeling approach allows the prediction of broiler growth without any prior knowledge of the system and takes into account the time-variant (nonlinear) nature of the growth process based on only a small window of measured information, it is suitable for real-time integration in process management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.