Abstract
The original exact inference algorithm of the GP model runs very slow.We developed a recursive inference algorithm as an improvement.The new algorithm can obtain the same result in a shorter time.It works well for the real-time online prediction problems. Gaussian Process is a theoretically rigorous model for prediction problems. One of the deficiencies of this model is that its original exact inference algorithm is computationally intractable. Therefore, its applications are limited in the field of real-time online predictions. In this paper, a recursive prediction algorithm based on the Gaussian Process model is proposed. In recursive algorithms, the computational time of the next step can be greatly reduced by utilizing the intermediate results of the current step. The proposed recursive algorithm accelerates the prediction and avoids the loss of accuracy at the same time. Experiments are done on an ultra-short term electric load data set and the results are demonstrated to show the accuracy and efficiency of the new algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.