Abstract
Atmospheric particulate matter (PM) is one of the pollutant that may have a significant impact on human health. Data collected during three years in an urban area of the Adriatic coast are analysed using three models: a multiple linear regression model, a neural network model with and without recursive architecture. Measured meteorological parameters and PM10 concentration are used as input to forecast the daily averaged concentration of PM10 from one to three days ahead. All simulations show that the neural network with recursive architecture has better performances compared to both the multiple linear regression model and the neural network model without the recursive architecture. Results of PM forecasts are compared with the air quality limits for health protection to test the performance as operational tool. The inclusion of carbon monoxide (CO) concentration as further input parameter in the model, has been evaluated in terms of forecast improvements. Finally, all models are used to forecast the PM2.5 concentration, using as input the meteorological data, the PM10 and CO concentration, to simulate the situation when PM2.5 is not observed. The comparison between observed and forecasted PM2.5 shows that the neural network is able to forecast the PM2.5 concentrations even if PM2.5 is not included among the input parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.