Abstract
Fine-grained image classification is a difficult problem, and previous studies mainly overcome this problem by locating multiple discriminative regions in different scales and then aggregating complementary information explored from the located regions. However, locating discriminative regions introduces heavy overhead and is not suitable for real-world application. In this paper, we propose the recursive multi-scale channel-spatial attention module (RMCSAM) for addressing this problem. Following the experience of previous research on fine-grained image classification, RMCSAM explores multi-scale attentional information. However, the attentional information is explored by recursively refining the deep feature maps of a convolutional neural network (CNN) to better correspond to multi-scale channel-wise and spatial-wise attention, instead of localizing attention regions. In this way, RMCSAM provides a lightweight module that can be inserted into standard CNNs. Experimental results show that RMCSAM can improve the classification accuracy and attention capturing ability over baselines. Also, RMCSAM performs better than other state-of-the-art attention modules in fine-grained image classification, and is complementary to some state-of-the-art approaches for fine-grained image classification. Code is available at https://github.com/Dichao-Liu/Recursive-Multi-Scale-Channel-Spatial-Attention-Module.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.