Abstract

AbstractThis paper addresses the dynamical modeling and control of reconfigurable modular robots. The modular actuators (brushless DC motors with Harmonic Drive gears) for the robots under consideration are connected by rigid links. This way the robot can be assembled in different configurations by rearranging these components. For dynamical modeling the Projection Equation in Subsystem representation is used, taking advantage of its modular structure. Due to the lack of position sensors at the gearbox output shaft, deflections caused by the elasticities in the gears can not be compensated by the PD motor joint controller. Therefore, a correction of the motor trajectory is needed, which can be calculated as part of a flatness based feed‐forward control using the exact model of the robot. With the recursive approach proposed in this paper the concept of reconfigurability is retained. For validation a redundant articulated robot arm with seven joints is regarded and results are presented. (© 2012 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call