Abstract

I. THE RECURSIVE APPROACH 1. Introduction 2. An Overview 2.1 A Deterministic Model of Optimal Growth 2.2 A Stochastic Model of Optimal Growth 2.3 Competitive Equilibrium Growth 2.4 Conclusions and Plans II. DETERMINISTIC MODELS 3. Mathematical Preliminaries 3.1 Metric Spaces and Normed Vector Spaces 3.2 The Contraction Mapping Theorem 3.3 The Theorem of the Maximum 4. Dynamic Programming under Certainty 4.1 The Principle of Optimality 4.2 Bounded Returns 4.3 Constant Returns to Scale 4.4 Unbounded Returns 4.5 Euler Equations 5. Applications of Dynamic Programming under Certainty 5.1 The One-Sector Model of Optimal Growth 5.2 A Cake-Eating Problem 5.3 Optimal Growth with Linear Utility 5.4 Growth with Technical Progress 5.5 A Tree-Cutting Problem 5.6 Learning by Doing 5.7 Human Capital Accumulation 5.8 Growth with Human Capital 5.9 Investment with Convex Costs 5.10 Investment with Constant Returns 5.11 Recursive Preferences 5.12 Theory of the Consumer with Recursive Preferences 5.13 A Pareto Problem with Recursive Preferences 5.14 An (s, S) Inventory Problem 5.15 The Inventory Problem in Continuous Time 5.16 A Seller with Unknown Demand 5.17 A Consumption-Savings Problem 6. Deterministic Dynamics 6.1 One-Dimensional Examples 6.2 Global Stability: Liapounov Functions 6.3 Linear Systems and Linear Approximations 6.4 Euler Equations 6.5 Applications III. STOCHASTIC MODELS 7. Measure Theory and Integration 7.1 Measurable Spaces 7.2 Measures 7.3 Measurable Functions 7.4 Integration 7.5 Product Spaces 7.6 The Monotone Class Lemma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call