Abstract

In this paper, a recursive t-distribution noise model based maximum likelihood estimation algorithm for discrete-time dynamic state estimation is proposed. The proposed estimator is robust to outliers because the “thick tail” of the t-distribution reduces the effect of large errors in the likelihood function. A computationally efficient recursive algorithm is derived using the influence function. As the t-distribution reduces to the Gaussian distribution when its degree of freedom tends to infinity, the proposed estimator reduces to the Kalman filter. The mean squared error is used to evaluate the performance of the proposed estimator. Compared with the Kalman filter, the proposed estimator is more robust to outliers in the process and measurement noise. Simulations show that for the particle filter to give a better mean squared error, its computational time is two orders of magnitude slower than the proposed estimator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.