Abstract
We present the recursive least squares dictionary learning algorithm, RLS-DLA, which can be used for learning overcomplete dictionaries for sparse signal representation. Most DLAs presented earlier, for example ILS-DLA and K-SVD, update the dictionary after a batch of training vectors has been processed, usually using the whole set of training vectors as one batch. The training set is used iteratively to gradually improve the dictionary. The approach in RLS-DLA is a continuous update of the dictionary as each training vector is being processed. The core of the algorithm is compact and can be effectively implemented. The algorithm is derived very much along the same path as the recursive least squares (RLS) algorithm for adaptive filtering. Thus, as in RLS, a forgetting factor ? can be introduced and easily implemented in the algorithm. Adjusting ? in an appropriate way makes the algorithm less dependent on the initial dictionary and it improves both convergence properties of RLS-DLA as well as the representation ability of the resulting dictionary. Two sets of experiments are done to test different methods for learning dictionaries. The goal of the first set is to explore some basic properties of the algorithm in a simple setup, and for the second set it is the reconstruction of a true underlying dictionary. The first experiment confirms the conjectural properties from the derivation part, while the second demonstrates excellent performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.