Abstract

Trajectory prediction of surrounding objects plays a pivotal role in the field of autonomous driving vehicles. In the current rollout process, it suffers from an accumulation of errors, which has a negative impact on prediction accuracy. This paper proposes a parametric-learning recursive least-squares (RLS) method integrated with an encoder–decoder framework for trajectory prediction, named the recursive least-squares-based refinement network (RRN). Through the generation of several anchors in the future trajectory, RRN can capture both local and global motion patterns. We conducted experiments on the prevalent NGSIM and INTERACTION datasets, which contain various scenarios such as highways, intersections and roundabouts. The promising results indicate that RRN could improve the performance of the rollout trajectory prediction effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.