Abstract

Trajectory prediction of surrounding objects plays a pivotal role in the field of autonomous driving vehicles. In the current rollout process, it suffers from an accumulation of errors, which has a negative impact on prediction accuracy. This paper proposes a parametric-learning recursive least-squares (RLS) method integrated with an encoder–decoder framework for trajectory prediction, named the recursive least-squares-based refinement network (RRN). Through the generation of several anchors in the future trajectory, RRN can capture both local and global motion patterns. We conducted experiments on the prevalent NGSIM and INTERACTION datasets, which contain various scenarios such as highways, intersections and roundabouts. The promising results indicate that RRN could improve the performance of the rollout trajectory prediction effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call