Abstract

This brief presents an algorithm for the recursive identification of Vector AutoRegressive (VAR) models of large dimensions. We consider a VAR model where the coefficient matrices can be written as a sum of Kronecker products. The algorithm proposed consists of recursively updating the Kronecker factor matrices at each new time step using alternating least squares. When the number of terms in the Kronecker sum is small, a significant reduction in computational complexity is achieved with respect to the recursive least squares algorithm on an unstructured VAR model. Numerical validation of nonstationary atmospheric turbulence data, both synthetic and experimental, is shown for an adaptive optics application. Significant improvements in accuracy over batch identification methods that assume stationarity are observed while both the computational complexity and the required storage are reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.