Abstract
Efficient algorithms for image motion computation are important for computer vision applications and the modelling of biological vision systems. Intensity-based image motion computation proceeds in two stages: the convolution of linear spatiotemporal filter kernels with the image sequence, followed by the non-linear combination of the filter outputs. If the spatiotemporal extent of the filter kernels is large, then the convolution stage can be very intensive computationally. One effective means of reducing the storage required and computation involved in implementing the temporal convolutions is the introduction of recursive filtering. Non-recursive methods require the number of frames of the image sequence stored at any given time to be equal to the temporal extent of the slowest temporal filter. In contrast, recursive methods encode recent stimulus history implicitly in the values of a small number of variables updated through a series of feedback equations. Recursive filtering reduces the number of values stored in memory during convolution and the number of mathematical operations involved in computing the filters' outputs. This paper extends previous recursive implementations of gradient- and correlation-based motion analysis algorithms [Fleet DJ, Langley K (1995) IEEE PAMI 17: 61-67; Clifford CWG, Ibbotson MR, Langley K (1997) Vis Neurosci 14: 741-749], describing a recursive implementation of causal band-pass temporal filters suitable for use in energy- and phase-based algorithms for image motion computation. It is shown that the filters' temporal frequency tuning curves fit psychophysical estimates of the temporal properties of human visual filters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.