Abstract

ABSTRACTThe existing identification algorithms for Hammerstein systems with dead-zone nonlinearity are restricted by the noise-free condition or the stochastic noise assumption. Inspired by the practical bounded noise assumption, an improved recursive identification algorithm for Hammerstein systems with dead-zone nonlinearity is proposed. Based on the system parametric model, the algorithm is derived by minimising the feasible parameter membership set. The convergence conditions are analysed, and the adaptive weighting factor and the adaptive covariance matrix are introduced to improve the convergence. The validity of this algorithm is demonstrated by two numerical examples, including a practical DC motor case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.