Abstract

This paper considers a single-input single-output linear dynamic system, whose input and output are corrupted by Gaussian white measurement noises with zero means and unknown variances; the parameter estimation of such a system is a typical errors-in-variables (EIV) system identification problem. This paper proposes the correlation function-based two-step identification methods for the EIV systems. In order to obtain the unbiased parameter estimates of the EIV system, we derive the correlation function equation by using the correlation analysis method and adopt the least squares method and the instrumental variable method to recursively compute the parameter estimates of the model, resulting in the unbiased parameter estimates of the EIV systems. Finally, a numerical simulation example is given to demonstrate the effectiveness of the proposed algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call