Abstract
This paper studies the parameter identification problems of multivariate output-error moving average systems. An auxiliary model based extended stochastic gradient algorithm and based recursive extended least squares algorithm are proposed for estimating the parameters of the multivariate output-error moving average systems. By using the multi-innovation identification theory, an auxiliary model based multi-innovation extended stochastic gradient algorithm is derived for improving the parameter estimation accuracy. Finally, the simulation results indicate that the proposed algorithms can work well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Control, Automation and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.