Abstract

This study investigates the robust recursive identification problem for Wiener non-linear systems with non-stationary disturbance and measurement white Gaussian noise. Non-stationary disturbances cannot be eliminated by conventional statistical strategy. To overcome such problem, the non-stationary disturbance signal is modelled as a dynamic parameter with a small change rate which is to be estimated step. Utilising the forgetting factor (FF) and the auxiliary model strategy, a discrete-time recursive least-squares algorithm is designed by augmenting the parameter vector and the information vector. To facilitate the steady asymptotic convergence of the time-invariant system parameters and the dynamic tracking ability of the disturbance, two adaptive FFs are proposed to construct a new matrix FF scheme that is used to update the covariance matrix. Moreover, several asymptotic convergence conditions are also derived based on the stochastic statistical theory under persistent excitation condition. Finally, one illustrative example with non-stationary disturbance is employed to show the effectiveness and advantages of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.