Abstract

The input u k and output y k of the multivariate ARMAX system A(z)y k = B(z)u k + C(z)w k are observed with noises: u ≜ u k + e and y ≜ y k + e , where e and e denote the observation noises. Such kind of systems are called errors-in-variables (EIV) systems. In the paper, recursive algorithms based on observations are proposed for estimating coefficients of A(z), B(z), C(z), and the covariance matrix Rw of w k without requiring higher than the second order statistics. The algorithms are convenient for computation and are proved to converge to the system coefficients under reasonable conditions. An illustrative example is provided, and the simulation results are shown to be consistent with the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.