Abstract
We propose a recursive generalized total least-squares (RGTLS) estimator that is used in parallel with a noise covariance estimator (NCE) to solve the errors-in-variables problem for multi-input-single-output linear systems with unknown noise covariance matrix. Simulation experiments show that the suggested RGTLS with NCE procedure outperforms the common recursive least squares (RLS) and recursive total instrumental variables (RTIV) estimators when all measured inputs and the measured output are noisy. Moreover, when all measured inputs are noise-free, RGTLS with NCE performs similarly to RLS, which in this special case is the optimal estimator, and again RTIV was inferior compared with the RGTLS and NCE procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.