Abstract

This paper presents a unique adaptive control methodology that fuses real-time Gaussian process (GP) modeling with statistically-driven design space reduction in order to converge upon an optimal set of control parameters. The proposed approach represents a dramatic departure from traditional adaptive control techniques that assume significant underlying structural knowledge of the system model, in addition to representing a significant departure from traditional GP-based regression, which has traditionally been applied to iterative design optimization problems rather than real-time control. Within the proposed adaptive control strategy, GP modeling is tailored to control systems with relatively short time steps through the use of a recursive GP (RGP)-based update to process new information as it is made available, which circumvents the need to retain a complete database of prior data. Exploration of the design space is achieved by selecting design points associated with large prediction variance. At each time step, suboptimal points within the design space are rejected based upon the uncertainty characterization from the GP model and statistical hypothesis testing. The RGP-based adaptive control law has been validated using a numerical model of an airborne wind energy system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.