Abstract

In this brief, we introduce an adaptive control approach for a novel tidal energy harvesting device called the Duct-Sail. The design combines features of kite-based energy-harvesting devices and ducted turbines to realize power augmentation through cross-current flight at low flow speeds along with the flow augmentation, stationary performance potential, and protection offered by a duct. At low flow speeds, the Duct-Sail executes high-speed figure-8 cross-current flight to generate rated power. At higher flow speeds, it curtails its cross-current motion to limit structural loading while still delivering rated power. We present a detailed dynamic model of the system along with design parameters for an initial prototype. We also present model-based and nonmodel-based adaptive control strategies that are used to control the intensity of cross-current flight in a time-varying flow profile. Lastly, we present simulation results using the real flow data from a candidate installation site, which enables a practically meaningful comparison of various adaptive control strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.