Abstract

We consider a failure-prone system which operates in continuous time and is subject to condition monitoring at discrete time epochs. It is assumed that the state of the system evolves as a continuous-time Markov process with a finite state space. The observation process is stochastically related to the state process which is unobservable, except for the failure state. Combining the failure information and the information obtained from condition monitoring, and using the change of measure approach, we derive a general recursive filter, and, as special cases, we obtain recursive formulae for the state estimation and other quantities of interest. Up-dated parameter estimates are obtained using the EM algorithm. Some practical prediction problems are discussed and an illustrative example is given using a real dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.