Abstract

An improved method for exhaustively identifying common pharmacophores from a given list of 3D conformers is proposed. The method partitions feature lists into multidimensional boxes according to the distances between the pharmacophore centers. Unlike some existing techniques, each feature list is mapped into multiple boxes to ensure that good matches will never be missed due to the partitioning. To circumvent the computational complexity of the problem, a recursive distance partitioning (RDP) algorithm is introduced, in which the partitioning and the elimination of unqualified feature lists are carried out at multiple levels. The method is demonstrated to be both accurate and efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.