Abstract

In this work, diameters of Eucalyptus trees are predicted by means of Multilayer Perceptron and Radial Basis Function artificial neural networks. By taking only three diameter measures at the base of the tree, diameters are predicted recursively until they reach the value of minimum merchantable diameter, with no previous knowledge of total tree height. It was considered the diameter top of 4cm outside bark as minimum merchantable diameter. The training was conducted with only 10% of the trees from the total planted site. The Smalian method utilizes the predicted diameters to calculate merchantable tree volumes. The performance of the proposed model was satisfactory when predicted diameters and volumes are compared to actual ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.