Abstract

Deformable image registration, estimating the spatial transformation between different images, is an important task in medical imaging. Many previous studies have used learning-based methods for multi-stage registration to perform 3D image registration to improve performance. The performance of the multi-stage approach, however, is limited by the size of the receptive field where complex motion does not occur at a single spatial scale. We propose a new registration network combining recursive network architecture and mutual attention mechanism to overcome these limitations. Compared with the state-of-the-art deep learning methods, our network based on the recursive structure achieves the highest accuracy in lung Computed Tomography (CT) data set (Dice score of 92\% and average surface distance of 3.8mm for lungs) and one of the most accurate results in abdominal CT data set with 9 organs of various sizes (Dice score of 55\% and average surface distance of 7.8mm). We also showed that adding 3 recursive networks is sufficient to achieve the state-of-the-art results without a significant increase in the inference time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call