Abstract
Assuming that one-step transition kernel of a discrete time, time-homogenous Markov chain model is parameterized by a parameter $\theta\in\boldsymbol{\Theta}$, we derive a recursive (in time) construction of confidence regions for the unknown parameter of interest, say $\theta^{*}\in\boldsymbol{\Theta}$. It is supposed that the observed data used in the construction of the confidence regions is generated by a Markov chain whose transition kernel corresponds to $\theta^{*}$. The key step in our construction is the derivation of a recursive scheme for an appropriate point estimator of $\theta^{*}$. To achieve this, we start by what we call the base recursive point estimator, using which we design a quasi-asymptotically linear recursive point estimator (a concept introduced in this paper). For the latter estimator we prove its weak consistency and asymptotic normality. The recursive construction of confidence regions is needed not only for the purpose of speeding up the computation of the successive confidence regions, but, primarily, for the ability to apply the dynamic programming principle in the context of robust adaptive stochastic control methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.